Extensions 1→N→G→Q→1 with N=C22×D28 and Q=C2

Direct product G=N×Q with N=C22×D28 and Q=C2
dρLabelID
C23×D28224C2^3xD28448,1367

Semidirect products G=N:Q with N=C22×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D28)⋊1C2 = (C2×C28)⋊5D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):1C2448,205
(C22×D28)⋊2C2 = D2813D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):2C2448,266
(C22×D28)⋊3C2 = C232D28φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):3C2448,494
(C22×D28)⋊4C2 = C2×C284D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):4C2448,928
(C22×D28)⋊5C2 = C2×C22⋊D28φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):5C2448,940
(C22×D28)⋊6C2 = C2×D14⋊D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):6C2448,942
(C22×D28)⋊7C2 = C2×C4⋊D28φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):7C2448,959
(C22×D28)⋊8C2 = D4×D28φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):8C2448,1002
(C22×D28)⋊9C2 = D2823D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):9C2448,1003
(C22×D28)⋊10C2 = C14.1202+ 1+4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):10C2448,1106
(C22×D28)⋊11C2 = C22×D56φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):11C2448,1193
(C22×D28)⋊12C2 = C2×C287D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):12C2448,1243
(C22×D28)⋊13C2 = D2816D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):13C2448,570
(C22×D28)⋊14C2 = C429D14φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):14C2448,978
(C22×D28)⋊15C2 = D2819D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):15C2448,1062
(C22×D28)⋊16C2 = D2821D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):16C2448,1083
(C22×D28)⋊17C2 = C2×C8⋊D14φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):17C2448,1199
(C22×D28)⋊18C2 = C22×D4⋊D7φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):18C2448,1245
(C22×D28)⋊19C2 = C2×C28⋊D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):19C2448,1256
(C22×D28)⋊20C2 = C2×D4⋊D14φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):20C2448,1273
(C22×D28)⋊21C2 = C14.1462+ 1+4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):21C2448,1283
(C22×D28)⋊22C2 = C22×D4×D7φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):22C2448,1369
(C22×D28)⋊23C2 = C22×Q82D7φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28):23C2448,1373
(C22×D28)⋊24C2 = C2×D48D14φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28):24C2448,1376
(C22×D28)⋊25C2 = C22×C4○D28φ: trivial image224(C2^2xD28):25C2448,1368

Non-split extensions G=N.Q with N=C22×D28 and Q=C2
extensionφ:Q→Out NdρLabelID
(C22×D28).1C2 = (C2×C4)⋊9D28φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).1C2448,199
(C22×D28).2C2 = (C2×Dic7)⋊3D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).2C2448,206
(C22×D28).3C2 = D28.31D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28).3C2448,265
(C22×D28).4C2 = (C2×C4)⋊6D28φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).4C2448,473
(C22×D28).5C2 = (C2×C4)⋊3D28φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).5C2448,525
(C22×D28).6C2 = C2×C2.D56φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).6C2448,646
(C22×D28).7C2 = C2×C4.D28φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).7C2448,929
(C22×D28).8C2 = C2×D14.5D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).8C2448,958
(C22×D28).9C2 = C22×C56⋊C2φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).9C2448,1192
(C22×D28).10C2 = C2×C14.D8φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).10C2448,499
(C22×D28).11C2 = (C2×D28)⋊10C4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).11C2448,522
(C22×D28).12C2 = C4⋊C436D14φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28).12C2448,535
(C22×D28).13C2 = D28.36D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28).13C2448,580
(C22×D28).14C2 = C2×C28.46D4φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28).14C2448,664
(C22×D28).15C2 = C23.48D28φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28).15C2448,665
(C22×D28).16C2 = C2×D28⋊C4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).16C2448,956
(C22×D28).17C2 = C427D14φ: C2/C1C2 ⊆ Out C22×D28112(C2^2xD28).17C2448,974
(C22×D28).18C2 = C22×Q8⋊D7φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).18C2448,1260
(C22×D28).19C2 = C2×C28.23D4φ: C2/C1C2 ⊆ Out C22×D28224(C2^2xD28).19C2448,1267
(C22×D28).20C2 = C2×C4×D28φ: trivial image224(C2^2xD28).20C2448,926

׿
×
𝔽